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Abstract. This paper presents numerical studies of the single hole tt′t′′J model that address the interplay
between the kinetic energy of itinerant electrons and the exchange energy of local moments as of interest
to doped Mott insulators. Due to this interplay, two different spin correlations coexist around a mobile
vacancy. These local correlations provide an effective two-band picture that explains the two-band structure
observed in various theoretical and experimental studies, the doping dependence of the momentum space
anisotropic pseudogap phenomena and the asymmetry between hole and electron doped cuprates.

PACS. 71.10.Fd Lattice fermion models – 74.25.Jb Electronic structure – 74.72.-h Cuprate
superconductors

1 Introduction

The evolution between the weakly correlated Fermi metal
and the strongly coupled Mott insulator is a major and
long-standing problem in the field of condensed matter
physics [1–3]. It concerns a vast list of material com-
pounds [4] where the local character of d and f orbitals en-
hances the electron effective mass together with the role of
the electron-electron Coulomb repulsive interaction. The
resulting competition between the small kinetic energy
and the strong interaction may lead itinerant electrons
in the metallic state to form local moments in the Mott
insulating state [1]. In this paper, I focus on the interplay
between such itinerant and localized electrons.

The generalized-tJ model explicitly embodies the
above interplay. Indeed, “t” stands for the kinetic energy
term of itinerant charge carriers and “J” stands for the
interaction term between localized spins. The intricacy of
this model follows from the mutual frustration between
these two terms. Specifically, the J > 0 term favors a stag-
gered moment spin background that constrains the motion
of vacancies, while the t term moves electrons around and,
thus, reshuffles and destroys the underlying antiferromag-
netic (AF) spin pattern. The two-dimensional (2D) tt′t′′J
model, which this paper addresses, is especially interest-
ing because the compromise between the spin exchange
and hole kinetic energies is particularly subtle in the pa-
rameter regime of interest to real materials, such as the
high-temperature superconducting cuprates [5–7].
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Following the recent improvement in computational
resources, experimental resolution and sample quality,
various non-trivial results have illuminated our under-
standing of 2D doped Mott insulators. It is exciting to
note that many of these results are consistently obtained
by different theoretical approaches and by experiments.
For instance, a variety of numerical and analytical stud-
ies show that the electronic spectrum below the chemi-
cal potential has a robust two-band structure and that
changing the electron density redistributes the spectral
weight in a momentum dependent way [8–17]. Similar con-
clusions apply to the two dispersive features displayed
by angle-resolved photoemission spectroscopy (ARPES)
on the cuprates [18–22]. Since the electron dynamics in
strongly correlated systems follows from the local environ-
ment around the carriers [23], the above two-band struc-
ture reflects the presence of two local correlations, which
arise due to the interplay between itinerant electrons and
local moments.

This paper explores the microscopic origin of the above
short-range correlations and, thus, of the aforementioned
two-band structure that appears in both theory and exper-
iments. Specifically, in Section 2 the exact diagonalization
and the self-consistent Born approximation techniques are
employed to study the single hole problem in the tt′t′′J
model. I show that the interplay between the “t” and “J”
terms of the Hamiltonian translates into the coexistence
of two different types of spin correlations around the va-
cancy — one type is driven by the kinetic energy term
and the other by the exchange energy term. These short-
range correlations, which follow from purely local ener-
getic considerations and whose properties are studied in
Section 3, underlie a diverse set of non-trivial and, by now,
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well established properties of 2D doped Mott insulators.
These include the doping dependence of the pseudogap
dispersion and of the pseudogap momentum space spectral
weight distribution [18,19,21,24–27], as well as the asym-
metry between the hole and electron doped regimes of the
cuprate compounds (Sect. 4) [9,10,14,18,19,21,25,28,29].

2 Two local correlations

2.1 The model system

The single hole 2D tt′t′′J Hamiltonian is

Htt′t′′J = −
∑

〈ij〉,σ
tij

(
c̃†i,σ c̃j,σ +H.c.

)
+

∑

〈ij〉
JijSi.Sj (1)

where c̃i,σ = ci,σ(1 − ni,−σ) is the constrained electron
operator. tij equals t, t′ and t′′ for first, second and third
nearest-neighbor (NN) sites respectively and vanishes oth-
erwise. The exchange interaction only involves NN spins
for which Jij = J . In this paper J ∈ [0.2, 0.8] (units are set
so that t = 1), which includes the experimentally relevant
regime J ≈ 0.4. The calculations are not extended down
to J = 0 because, in that limit, the hole is subjected to the
Nagaoka instability [30] and, thus, the physics for J ≈ 0
is specific to such a regime and is not relevant to materi-
als like the cuprates [31]. The calculations for J > 0.8 do
not change the argument below nor the consequent con-
clusions.

As mentioned in Section 1, this paper addresses the
electron dynamics as probed by the electron spectral func-
tion. Its focus does not lie in the full details of the spec-
tral function line shape, but rather on the fact that the
electronic spectrum displays two separate dispersive fea-
tures below the Fermi level. This work also concerns
the momentum distribution of electron spectral weight,
which displays distinct behavior in separate regions of the
Brillouin zone, namely the regions around (π/2, π/2) and
(π, 0). The above facts encode short time and short length
scale physics. Hence, within the above context, it is rel-
evant to study small lattice systems and, unless other-
wise stated, all the results below come from the exact
diagonalization of Htt′t′′J on a 4 × 4 lattice. The ex-
act diagonalization analysis is further substantiated by
results from the self-consistent Born approximation ap-
proach to the spinless-fermion Schwinger-boson represen-
tation of the tJ model [32–34] on a 16 × 16 lattice.

2.2 One-hole states

There exist two extreme limits where the interplay be-
tween itinerant electrons and local moments occurs,
namely the one where: (i) most electrons are itinerant and
the corresponding Fermi energy is the highest energy scale
in the problem; (ii) most electrons form local moments and
the system reduces to a lattice of spins with a few mobile
vacancies. The former case is captured by the well under-
stood Kondo model, which addresses how the Fermi sea
accommodates the presence of a local moment [35]. The

second case, which is of interest close to the Mott insu-
lator transition, differs from the standard Kondo lattice
problem since the spin-spin interaction is larger than the
itinerant electrons’ Fermi energy [36]. In this case, it is
rather convenient to consider how the spin background
adjusts to the presence of a hole.

Hence, in what follows, one studies the lowest energy
configurations of the spin background around a single va-
cancy. In particular, one considers the lowest energy single
hole state |ψk, J, t

′t,′′ 〉 for each momentum k, where J , t′
and t′′ label the model parameters that define the cor-
responding Hamiltonian Htt′t′′J . This state can fall into
two categories — it either has zero or non-zero quasi-
particle spectral weight |〈ψk, J, t

′, t′′|c̃k,σ|HF GS〉|2, where
|HF GS〉 denotes the groundstate of the half-filled system.
For all k, t′ and t′′ there exists a certain Jc(k, t′, t′′) such
that |ψk, J, t

′, t′′〉 has zero quasiparticle spectral weight if
and only if J ≤ Jc(k, t′, t′′). The intuition behind this re-
sult is that for J/t� 1 the large spin stiffness renders the
spin background robust to hole motion, while for small
enough J/t the soft AF spin configuration is dramatically
modified by the doped hole (the Nagaoka instability [30]
perfectly illustrates this last case). If J ≤ Jc(k, t′, t′′)
one denotes |ψk, J, t

′t,′′ 〉 by |Ũk, J, t
′, t′′〉 (hence, by def-

inition, |Ũk, J, t
′, t′′〉 has vanishing quasiparticle spectral

weight). If, instead, J > Jc(k, t′, t′′) the single hole state
|ψk, J, t

′t,′′ 〉 can be approximately recast as

|ψk, J, t
′, t′′〉 ∼= q(k, J, t′, t′′)|Qk, t

′, t′′〉
+ u(k, J, t′, t′′)|Uk, t

′, t′′〉 (2)

where |Qk, t
′, t′′〉 and |Uk, t

′, t′′〉 are orthonormal states (to
be defined below) that do not depend on J [37],

while q(k, J, t′, t′′) and u(k, J, t′, t′′) are J-dependent
coefficients that obey the normalization condition
|q(k, J, t′, t′′)|2 + |u(k, J, t′, t′′)|2 = 1. Equation (2), which
applies in a large range of J values, is a major result in
this paper. It implies that, in a large interval of values of
J > Jc(k, t′, t′′), the eigenstates |ψk, J, t

′t,′′ 〉 define a line
parameterized by J which approximately lies in a 2D plane
in the single hole tt′t′′J model Hilbert space. The physical
content of this statement, together with evidence support-
ing equation (2), are presented below.

If t′, t′′ = 0 then Jc(k, t′ = 0, t′′ = 0) < 0.2 for
all k in Table 1. This table shows that for all J ∈
[0.2, 0.8], as well as for all depicted momenta k, the states
|ψk, J, t

′ = 0, t′′ = 0〉 have almost unit overlap with the
2D Hilbert space {|ψk, J = 0.2, t = 0′, t′′ = 0〉, |ψk, J =
0.6, t′ = 0, t′′ = 0〉}. This conclusion is further substanti-
ated by the self-consistent Born approximation technique
on a 16 × 16 lattice (see Tab. 1), thus showing that the
above result is not specific to the 4 × 4 lattice used in
the exact diagonalization calculation [38]. A very simi-
lar observation holds when t′, t′′ �= 0, as Table 1 illus-
trates for t′ = −0.2, t′′ = 0.1. The only difference be-
tween the above t′, t′′ = 0 and t′ = −0.2, t′′ = 0.1
cases is that Jc(k = (π, 0), t′ = 0, t′′ = 0) < 0.2 while
0.3 < Jc(k = (π, 0), t′ = −0.2, t′′ = 0.1) < 0.4. Since
the approximate equality in equation (2) only applies for
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Fig. 1. (a) SQk (i) and (b) SUk (i) where i is the distance to the vacancy (black square at the center), k = (π/2, π/2) and t′, t′′ = 0.
Different k, t′ and t′′ lead to qualitatively similar conclusions, as seen in Figure 2.

Table 1. Square of the overlap of |ψk , J, t
′, t′′〉 with the Hilbert

space {|ψk , J = 0.2, t′, t′′〉, |ψk , J = 0.6, t′, t′′〉} for different J
and k. Both exact diagonalization (ED) and self-consistent
Born approximation (SCBA) results are shown for t′, t′′ = 0.
Exact diagonalization results are also shown for t′ = −0.2,
t′′ = 0.1. For t′ = −0.2, t′′ = 0.1 and k = (π, 0) the Hilbert
space {|ψk , J = 0.4, t′, t′′〉, |ψk , J = 0.8, t′, t′′〉} is used instead.

J 0.3 0.4 0.5 0.6 0.7 0.8
(π

2
, π

2
) 0.9994 0.9994 0.9998 1 0.9998 0.9990

t′ = 0 (π, 0) 0.9994 0.9994 0.9998 1 0.9998 0.9990
t′′ = 0 (π, π

2
) 0.9972 0.9977 0.9993 1 0.9992 0.9970

ED (π
2
, 0) 0.9975 0.9980 0.9994 1 0.9994 0.9977

(0, 0) 0.9946 0.9923 0.9963 1 0.9938 0.9766
(π

2
, π

2
) 0.9996 0.9996 0.9998 1 0.9998 0.9990

t′ = 0 (π, 0) 0.9994 0.9994 0.9998 1 0.9997 0.9986
t′′ = 0 (π, π

2
) 0.9989 0.9988 0.9996 1 0.9995 0.9978

SCBA (π
2
, 0) 0.9989 0.9988 0.9996 1 0.9995 0.9978

(0, 0) 0.9016 0.9005 0.9766 1 0.9842 0.9488
(π

2
, π

2
) 0.9994 0.9994 0.9998 1 0.9998 0.9990

t′ = −0.2 (π, 0) – 1 0.9998 0.9997 0.9999 1
t′′ = 0.1 (π, π

2
) 0.9936 0.9952 0.9986 1 0.9987 0.9950

ED (π
2
, 0) 0.9907 0.9943 0.9986 1 0.9988 0.9957

(0, 0) 0.9880 0.9856 0.9943 1 0.9940 0.9807

J > Jc(k, t′, t′′), in Table 1 one uses the 2D Hilbert space
{|ψk=(π,0), J = 0.4, t′ = −0.2, t′′ = 0.1〉, |ψk=(π,0), J =
0.8, t′ = −0.2, t′′ = 0.1〉} to illustrate that equation (2)
also applies when k = (π, 0) and t′ = −0.2, t′′ = 0.1.

The above numerical results show that equation (2)
is a very good approximation for a wide range of val-
ues of the exchange coupling J [39]. However, one
is still free to choose any orthonormal pair of states
|Qk, t

′, t′′〉 and |Uk, t
′, t′′〉 in the 2D Hilbert space used

as reference. A physically sensible choice comes from re-
quiring q(k, J, t′, t′′) to monotonously increase with J/t
[u(k, J, t′, t′′) thus decreases monotonously with J/t].
Since cranking up J enhances the quasiparticle features
of doped carriers [32], the above condition is automat-
ically satisfied if |Uk, t

′, t′′〉 has vanishing quasiparticle
spectral weight. This prescription uniquely determines Q
states (|Qk, t

′, t′′〉) and U states (|Uk, t
′, t′′〉) which, one

should note, are not eigenstates of Htt′t′′J [40]. The above
construction implies that Q states bear the electron-like
properties of the true eigenstates |ψk, J, t

′t,′′ 〉 and, in-
deed, for all values of t′ and t′′ used throughout this pa-

per 0.5 � |〈Qk|c̃k,σ |HF GS〉|2
|〈HF GS|c̃†k,σ c̃k,σ|HF GS〉| � 0.8 in the momentum

space region around the (π, 0) − (0, π) line [41].
The previous argument clarifies how the spin back-

ground adjusts to the presence of a moving hole. Specif-
ically, spins show two different types of correlations —
one type is enhanced upon increasing J/t and the other
becomes more pronounced when J/t is reduced. By def-
inition, Q and U states capture these correlations and,
not surprisingly, they display distinct physical properties.
Simply based on the above energetic considerations, one
expects the former states to retain the AF correlations of
the undoped system, while the doping induced spin cor-
relations in U states facilitate hole hopping. The anal-
ysis in Section 3.1 confirms this microscopic picture. In
principle, a similar construction applies to models other
than the 2D tt′t′′J model. The significant fact about this
model is that, for experimentally relevant parameters, the
overlap of both Q and U states with |ψk, J, t

′, t′′〉 is large
and exhibits a considerable momentum dependence (see
Sect. 4) [42].

3 Properties of the local correlations

The construction in Section 2.2 identifies two different spin
configurations that coexist around a mobile vacancy. It
also provides a recipe to separately obtain these configu-
rations and, thus, to study their properties.

3.1 Real and momentum space properties

First, consider the average spin density pattern around
the hole

SYk (i) ≡ 〈
Yk

∣∣
jS

z
j+ic̃j,−1/2c̃j,−1/2

∣∣ |Yk〉
〉

(3)

for both Y = Q and Y = U . Figure 1 illustrates how
different the spin background is in Q and U states for
k = (π/2, π/2) and t′, t′′ = 0. The former preserve an evi-
dent staggered pattern while the latter display an almost
uniform distribution of the spin-1/2 introduced in the sys-
tem upon doping. To show that this picture remains valid
for other values of k, t′ and t′′, one takes the average of
the staggered magnetization over the hole’s νth NN sites:
S̃Yk (ν) ≡ −〈(−)ix+iySYk (i)〉ν− 1

N−1
1
2 (here Y = Q,U) [43].

Figures 2a, 2c and 2e show that for different k, t′ and t′′
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Fig. 2. S̃Qk (ν) (left panels) and S̃Uk (ν) (right panels) for dif-
ferent momenta k. (a) and (b) t′ = −0.3, t′′ = 0.2. (c) and (d)
t′, t′′ = 0. (e) and (f) t′ = 0.3, t′′ = −0.2.

the doped hole in Q states coexists with the staggered spin
pattern inherited from the undoped system. This state of
affairs contrasts with the results for U states, where the
AF spin pattern of the undoped system is destroyed and
the staggered magnetization around the hole is close zero
and even negative (Figs. 2b, 2d and 2f). One can check
that a similar conclusion holds for Ũ states [these are the
energy eigenfunctions |ψk, J, t

′, t′′〉 when J < Jc(k, t′, t′′)].
In order to complement the above real space picture,

one also considers the hole momentum distribution func-
tion

nYk (q, σ) ≡ 〈Yk|c̃−q,−σ c̃
†
−q,−σ|Yk〉 (4)

for Y = Q,U . Since Q states bear an electron-like charac-
ter, the hole momentum distribution function nQk (q,+1/2)
is peaked at q = k. A smaller peak is also observed at
q = k + (π, π) due to the strong AF correlations [45]. In
U states, the hole strongly interacts with the surrounding
spins and, as a result, the hole momentum distribution
function nUk (q,+1/2) peaks around q = (π, π) for all mo-
menta k (Fig. 3a). Table 2 illustrates that the hole density
in Ũ states also peaks around (π, π) independently of the
momentum k.

The above results confirm that Q states capture the
AF correlations that persist around the vacancy away
from half-filling. This is expected since these states have a
well defined quasiparticle character. A remarkably differ-
ent picture holds for the U and Ũ states, whose quasipar-
ticle spectral weight vanishes. As the above spin density
results indicate, the spin correlations in these states spread
the extra Sz = 1/2 away from the vacancy. The resulting
loss of spin exchange energy is accompanied by a gain in
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Fig. 3. (a)
∑′

q n
U
k (q,+1/2). Empty symbols involve sum over

q = (π, π), q = (±π/2, π) and q = (π,±π/2). Full symbols
involve sum over q = (0, 0), q = (±π/2, 0) and q = (0,±π/2).
(b)–(d) Dispersion relations for |Qk〉 (full line), |Uk〉 (dashed
line) and |ψk〉 (dash-dot line). Upper, middle and lower set
of dispersions are obtained for J equal to 0.2, 0.4 and 0.7 re-
spectively. (◦) Indicates the best energy obtained by a linear
combination of |Qk〉 and |Uk〉 when J < Jc(k, t

′, t′′) (in which

case |ψk〉 = |Ũk , J, t
′, t′′〉).

the hole kinetic energy, as it follows from the hole mo-
mentum distribution results which support that, in these
states, the hole always lies around the bare band bot-
tom [which is located at (π, π)]. This evidence resembles
predictions from spin-charge separation scenarios. Indeed,
within the slave-boson [7,46,47] and doped-carrier frame-
works [10,36], the electron decays into a charged spinless
boson, which condenses at (π, π), and a spin-1/2 charge-
less fermion, which carries the remaining momentum. The
above calculations determine the equal time correlations
probed by the quantities in equations (3) and (4) in a
small lattice and, thus, cannot prove the existence (or lack
thereof) of true spin-charge separation. Still, they support
that, in U and Ũ states, the lattice spins screen the hole
in conformity with short-range aspects of spin-charge sep-
aration phenomenology.

3.2 Effect on electron dynamics

The different hopping terms in the tt′t′′J model
Hamiltonian (Eq. (1)) move electrons between first, sec-
ond and third NN sites under the no-double-occupancy
constraint. These processes may or may not be restrained
by the surrounding spin correlations [48]. For instance,
NN hopping is frustrated by the two-sublattice structure
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Table 2.
∑′

q n
Ũ
k (q,+1/2) ≡ ∑′

q〈Ũk |c̃−q,−1/2c̃
†
−q,−1/2

|Ũk〉.
q = (0, 0) results involve sum over q = (0, 0), q = (±π/2, 0)
and q = (0,±π/2). q = (π, π) results involve sum over
q = (π, π), q = (±π/2, π) and q = (π,±π/2). The model
parameters used are relevant to both hole doped cuprates
(J = 0.4, t′ = −0.3, t′′ = 0.2) and electron doped cuprates
(J = 0.4, t′ = 0.3, t′′ = −0.2) [44].

t′ = −0.3; t′′ = 0.2 t′ = 0.3; t′′ = −0.2
k (π, 0) (0, 0) (π

2
, π

2
) (0, 0)

q = (0, 0) 0.0329 0.0343 0.0164 0.0328
q = (π, π) 0.5437 0.6051 0.5293 0.5141

Table 3. ∆EQ, ∆EU , ∆Eψ and WQ
k with k = k′ ≡ (π, 0) and

k = k′′ ≡ (π/2, π/2) for several t′ and t′′ and J = 0.4.

t′ t′′ ∆Eψ ∆EQ ∆EU WQ

k′ WQ

k′′

–0.3 0.2 0.69 1.43 0.22 0 0.75
–0.2 0.1 0.56 0.92 0.14 0.45 0.72
0 0 0 0 0 0.66 0.66

0.2 –0.1 –0.75 –1.08 –0.10 0.76 0.50
0.3 –0.2 –0.80 –2.33 –0.29 0.82 0

of AF correlations. Intra-sublattice hopping processes are,
however, consistent with the staggered pattern of AF cor-
relations which, thus, do not strongly renormalize t′ and
t′′ [49].

The way the spin correlations in U states renormal-
ize t, t′ and t′′ is strikingly different though. Firstly, these
correlations are induced as a way to enhance NN hopping.
Secondly, they heavily renormalize t′ and t′′. To establish
the latter fact, consider the hole dispersion in Q states
EQk ≡ 〈Qk|Htt′t′′J |Qk〉 and the hole dispersion in U states
EUk ≡ 〈Uk|Htt′t′′J |Uk〉. Table 3 displays how the disper-
sion width between (π, 0) and (π/2, π/2) changes with t′

and t′′ for both Q states (∆EQ ≡ EQ(π,0) −EQ(π/2,π/2)) and
U states (∆EU ≡ EU(π,0) −EU(π/2,π/2)) [50]. Indeed, the ef-
fect of t′ and t′′ on ∆EQ is almost one order of magnitude
larger than on ∆EU .

Interestingly, certain spin liquid correlations discussed
in the context of the tJ model strongly inhibit coherent
intra-sublattice hopping [51]. This fact, together with the
above results, further supports that spin correlations in
U states resemble spin liquid correlations at short length
scales.

4 Momentum space anisotropy

In the cuprates’ renowned pseudogap metallic regime, the
low energy physics is determined by the states around the
(π, 0)−(0, π) line [21]. However, there is a clear distinction
between the nodal [k = (±π/2,±π/2)] and the antinodal
[k = (π, 0), (0, π)] regions. Specifically, ARPES detects
an energy difference between the single-electron spectral
features around (π/2, π/2) and (π, 0) (whence the term
“pseudogap”) [21,52] and, in addition, a strong suppres-
sion of the electronic character of excitations is observed

in the pseudogap region. These phenomena occur in both
hole and electron doped compounds with a crucial dif-
ference: in the former, low energy quasiparticles appear
close to (π/2, π/2) but not around (π, 0) [18,19,24,27];
in electron doped materials, both the pseudogap and the
excitations with little electron-like character are pushed
toward the zone diagonal [25,53,54].

This phenomenology is reproduced by the generalized-
tJ model, due to the role of the intra-sublattice hopping
parameters t′ and t′′. Indeed, for t′, t′′ = 0, the quasi-
particle states at (π/2, π/2) and (π, 0) have both com-
parable energies and spectral weight intensities [32,55].
On the other hand, non-zero t′ and t′′ fit the ex-
perimentally observed dispersion width along (π, 0) −
(π/2, π/2) [9,28,56,57]. These intra-sublattice hopping
parameters further lead to pseudogap states with mod-
ified spin background correlations [8,58,59] and, thus,
with small spectral weight [9,10,14,17,28,44]. As to the
difference between the hole and electron doped regimes,
it simply follows from the change in the sign of t′ and
t′′ [9,10,14,17,28,29,56].

The main message of this paper is that the results
obtained in Sections 2 and 3 provide a microscopic two-
band picture that rationalizes the above generalized-tJ
model behavior. This picture embodies the effect of the
Q and U states’ short-range correlations, which underlies
the momentum anisotropic pseudogap behavior, as well as
its dependence on electronic density (see below).

4.1 Two-band picture

Section 2.2 identifies the two distinct spin correlations that
dress the vacancy in low energy single-hole states. The
static properties of these low energy states then follow
from the reduced two-band Hamiltonian [40]

Hreduced,k ≡
[ 〈Qk|Htt′t′′J |Qk〉 〈Qk|Htt′t′′J |Uk〉
〈Uk|Htt′t′′J |Qk〉 〈Uk|Htt′t′′J |Uk〉

]
. (5)

This Hamiltonian yields the two spectral dispersions ob-
served both by ARPES data [18–20,22] and by various
theoretical studies of the related tJ and Hubbard mod-
els [10–14,16]. It also determines the hybridization of Q
and U states and, thus, the spectral weight distribution
throughout momentum space. Therefore, Hreduced,k must
capture the aforementioned role of t′ and t′′ in the pseu-
dogap phenomenology.

Interestingly, the above role of t′ and t′′ can be dis-
cussed only in terms of the dispersions EQk and EUk . To
see this, note that t′ and t′′ strongly affect the disper-
sion of a hole surrounded by the AF correlations in Q
states [in fact, ∆EQ = A(−4t′ + 8t′′), where the renor-
malization factor A � 1/2]. Therefore, t′ < 0 and t′′ > 0
increase the energy EQ(π,0) and decrease EQ(π/2,π/2). Conse-

quently, Eψ(π,0) ≡ 〈ψ(π,0)|Htt′t′′J |ψ(π,0)〉 also increases and

Eψ(π/2,π/2) ≡ 〈ψ(π/2,π/2)|Htt′t′′J |ψ(π/2,π/2)〉 also decreases

and, hence, a pseudogap ∆Eψ ≡ Eψ(π,0)−Eψ(π/2,π/2) opens
at (π, 0). Intra-sublattice hopping is, however, strongly
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frustrated in U states and, thus, t′ < 0 and t′′ > 0 in-
crease the energy difference EQ(π,0) − EU(π,0) while reduc-

ing EQ(π/2,π/2) − EU(π/2,π/2) (Figs. 3b, 3c). This impacts
the extent to which |Qk〉 and |Uk〉 hybridize, reducing
WQ

(π,0) ≡ |〈ψ(π,0)|Q(π,0)〉|2 while enlarging WQ
(π/2,π/2) ≡

|〈ψ(π/2,π/2)|Q(π/2,π/2)〉|2 (Tab. 3). For J = 0.4, t′ = −0.3,
t′′ = 0.2 the energy EQ(π,0) is so large that the mini-
mum energy obtained by a linear combination of |Q(π,0)〉
and |U(π,0)〉 becomes higher than that of a different
state |Ũ(π,0)〉 with vanishing quasiparticle spectral weight
(Fig. 3b). As a result, WQ

(π,0) = 0. Since, at the same time,

WQ
(π/2,π/2) = 0.75, nodal and antinodal states display a

sharply different electron-like character [8,58,59].
The change between the cuprates’ hole and electron

doped regimes amounts to a change in the sign of t′ and
t′′, in which case ∆EQ = A(−4t′ + 8t′′) changes sign as
well. The above argument then still applies, with the roles
of momenta (π, 0) and (π/2, π/2) interchanged (Fig. 3d
and Tab. 3).

4.2 Doping dependence

The above calculation and the ensuing arguments concern
a single hole surrounded by a spin background and, thus,
do not have to straightforwardly apply in the presence of
a finite hole density. Interestingly, though, a large body of
evidence suggests that single-hole physics is relevant away
from half-filling. Indeed, quantum Monte Carlo [11,12],
exact diagonalization [13] and cellular dynamical mean-
field theory [14] studies show that the two-band struc-
ture identified in the half-filled spectral function below the
chemical potential remains almost unaffected upon hole
doping, whose main effect is to transfer spectral weight
between the pre-existing bands in a momentum dependent
manner. This behavior is expected as long as short-range
AF correlations are present [11–13]. Since calculations on
the U/t = 8 Hubbard model [60] find that such correla-
tions persist around the vacancy up to the hole density
x = 0.25, the above two-band picture may apply in a
wide doping range. Cuprate ARPES data also displays
the two dispersive features throughout a large portion of
the phase diagram [18–22], hence, it complies with the
aforementioned theoretical expectations.

It is well-known that the pseudogap phenomenol-
ogy weakens upon increasing the dopant density.
Hence, the pseudogap magnitude diminishes away
from half-filling [21,26], as does the difference in the
electron-like character of nodal and antinodal excita-
tions [18,19,24,25,27]. This experimental evidence is cap-
tured by the naive extension of the above two-band pic-
ture to the finite hole density case. Indeed, Section 4.1
shows that the momentum space anisotropic behavior fol-
lows from the effect of t′ and t′′ in the dynamics of holes
surrounded by short-range AF correlations. Upon doping,
these correlations are gradually replaced by the doping
induced correlations which prevail in U states. Since the
latter strongly renormalize t′ and t′′, the differentiation

between the (π/2, π/2) and (π, 0) regions is also gradually
depleted.

References [10,36] develop a new mean-field approach
to the tt′t′′J model that embodies the above two-band
picture in the presence of a finite hole density. It explic-
itly captures the interplay between the mobile holes and
the above two different spin correlations and correctly de-
scribes the microscopic electron dynamics in the 2D doped
Mott insulator. This assertion is attested by the success-
ful comparison to other theoretical approaches and espe-
cially to a vast portfolio of non-trivial cuprate ARPES and
tunneling conductance data. The latter include the afore-
mentioned nodal-antinodal dichotomy, the Fermi arcs, the
peak-dip-hump structure, the kink and the extended flat
regions close to (π, 0) in the electron dispersion and the
large diversity of tunneling spectra [10,61].

5 Conclusions

In this paper, I numerically study how a single mobile hole
is dressed by the encircling spins within the tt′t′′J model
context. Purely local energetic arguments decide whether
a staggered moment configuration or a spin configura-
tion reminiscent of spin liquid physics prevails around
the vacancy. In the experimentally relevant parameter
regime, the competition between the two spin correlations
is very subtle and can be particularly sensitive to the hole
momentum. Consequently, the electron spectral proper-
ties can be extremely momentum dependent, displaying
a pseudogap and distinct quasiparticle properties in the
nodal and antinodal regions, as observed in both hole and
electron doped cuprate compounds [18,19,21,24–28]. AF
short-range correlations are gradually depleted upon dop-
ing and, thus, the above differentiation between the nodal
and antinodal regions is expected to disappear further
away from half-filling, in agreement with the phenomenol-
ogy of high-Tc superconductors [21,24–27].

The above considerations agree with prior
work [11,14,61–64] substantiating that the pseudo-
gap and the resulting momentum space anisotropy follow
from the local interaction between the doped carriers
and the short-range spin correlations that strive close to
the Mott insulating transition. This paper goes a step
further and provides a scheme to determine the local spin
correlations that dress moving carriers. In particular, it
shows that the interplay between the itinerant doped
carrier and the surrounding local moments translates into
the coexistence of two different local correlations, namely
the staggered moment correlations already present in
the undoped system and a different type of correlations
induced upon carrier doping. The latter correlations are
shown to be responsible for short-range phenomenology
characteristic of spin-charge separated states and to have
a peculiar impact in the electron dynamics, specifically,
they strongly renormalize t′ and t′′.

One way to optimize both the hole kinetic energy and
the spin exchange energy in doped Mott insulators is to
spatially separate charge and spin degrees of freedom into,
say, static stripe-like configurations [65]. The above cal-
culation suggests an alternative scenario: the quantum
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superposition of two types of local states which separately
enhance the J and t terms of the Hamiltonian. These two
states have a drastically different effect on the electron
dynamics and provide a simple two-band microscopic pic-
ture of doped Mott insulators. In this picture, the vacancy
is, at times, surrounded by staggered moments while, at
other instants, spin liquid correlations take over in order
to facilitate the vacancy’s motion. In the pseudogap mo-
mentum space region, the kinetic energy of a vacancy sur-
rounded by a local AF spin configuration increases with
|t′| and |t′′|, thus tilting the balance in favor of the above
spin liquid correlations (whose energy is less sensitive to
t′ and t′′). As a result, in the pseudogap regime, the way
the spin background dresses the hole at (π/2, π/2) dif-
fers from the way it dresses the hole at (π, 0). This fact
is in consonance with previous numerical evidence for the
approximate decoupling of spin and charge degrees of free-
dom in the pseudogap states [8,58,59].

Finally, I remark that the above two-band picture pro-
vides the basis to develop new approximate schemes to
describe doped Mott insulators. The mean-field theory de-
veloped in references [10,36] constitutes one such example.
Remarkably, this approach reproduces a variety of exper-
imental data [10,61].
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